Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 239
Filter
1.
J Hum Kinet ; 92: 5-17, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38736608

ABSTRACT

The goal of this study was to use the finite element (FE) method to compare and study the differences between bionic shoes (BS) and normal shoes (NS) forefoot strike patterns when running. In addition, we separated the forefoot area when forefoot running as a way to create a small and independent area of instability. An adult male of Chinese descent was recruited for this investigation (age: 26 years old; body height: 185 cm; body mass: 82 kg) (forefoot strike patterns). We analyzed forefoot running under two different conditions through FE analysis, and used bone stress distribution feature classification and recognition for further analysis. The metatarsal stress values in forefoot strike patterns with BS were less than with NS. Additionally, the bone stress classification of features and the recognition accuracy rate of metatarsal (MT) 2, MT3 and MT5 were higher than other foot bones in the first 5%, 10%, 20% and 50% of nodes. BS forefoot running helped reduce the probability of occurrence of metatarsal stress fractures. In addition, the findings further revealed that BS may have important implications for the prevention of hallux valgus, which may be more effective in adolescent children. Finally, this study presents a post-processing method for FE results, which is of great significance for further understanding and exploration of FE results.

2.
Front Bioeng Biotechnol ; 12: 1359337, 2024.
Article in English | MEDLINE | ID: mdl-38659647

ABSTRACT

Background: Dancers represent the primary demographic affected by ankle joint injuries. In certain movements, some Latin dancers prefer landing on the Forefoot (FT), while others prefer landing on the Entire foot (ET). Different stance patterns can have varying impacts on dancers' risk of ankle joint injuries. The purpose of this study is to investigate the differences in lower limb biomechanics between Forefoot (FT) dancers and Entire foot (ET) dancers. Method: A group of 21 FT dancers (mean age 23.50 (S.D. 1.12) years) was compared to a group of 21 ET dancers (mean age 23.33 (S.D. 0.94) years), performing the kicking movements of the Jive in response to the corresponding music. We import data collected from Vicon and force plates into OpenSim to establish musculoskeletal models for computing kinematics, dynamics, muscle forces, and muscle co-activation. Result: In the sagittal plane: ankle angle (0%-100%, p < 0.001), In the coronal plane: ankle angle (0%-9.83%, p = 0.001) (44.34%-79.52%, p = 0.003), (88.56%-100%, p = 0.037), ankle velocity (3.73%-11.65%, p = 0.017) (94.72-100%, p = 0.031); SPM analysis revealed that FT dancers exhibited significantly smaller muscle force than ET dancers around the ankle joint during the stance phase. Furthermore, FT dancers displayed reduced co-activation compared to ET dancers around the ankle joint during the descending phase, while demonstrating higher co-activation around the knee joint than ET dancers. Conclusion: This study biomechanically demonstrates that in various stance patterns within Latin dance, a reduction in lower limb stance area leads to weakened muscle strength and reduced co-activation around the ankle joint, and results in increased ankle inversion angles and velocities, thereby heightening the risk of ankle sprains. Nevertheless, the increased co-activation around the knee joint in FT dancers may be a compensatory response for reducing the lower limb stance area in order to maintain stability.

3.
Front Bioeng Biotechnol ; 12: 1377383, 2024.
Article in English | MEDLINE | ID: mdl-38650752

ABSTRACT

This study presents a comprehensive review of the correlation between tibial acceleration (TA), ground reaction forces (GRF), and tibial bone loading, emphasizing the critical role of wearable sensor technology in accurately measuring these biomechanical forces in the context of running. This systematic review and meta-analysis searched various electronic databases (PubMed, SPORTDiscus, Scopus, IEEE Xplore, and ScienceDirect) to identify relevant studies. It critically evaluates existing research on GRF and tibial acceleration (TA) as indicators of running-related injuries, revealing mixed findings. Intriguingly, recent empirical data indicate only a marginal link between GRF, TA, and tibial bone stress, thus challenging the conventional understanding in this field. The study also highlights the limitations of current biomechanical models and methodologies, proposing a paradigm shift towards more holistic and integrated approaches. The study underscores wearable sensors' potential, enhanced by machine learning, in transforming the monitoring, prevention, and rehabilitation of running-related injuries.

4.
J Biomech ; 168: 112120, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38677027

ABSTRACT

Foot and ankle joint models are widely used in the biomechanics community for musculoskeletal and finite element analysis. However, personalizing a foot and ankle joint model is highly time-consuming in terms of medical image collection and data processing. This study aims to develop and evaluate a framework for constructing a comprehensive 3D foot model that integrates statistical shape modeling (SSM) with free-form deformation (FFD) of internal bones. The SSM component is derived from external foot surface scans (skin measurements) of 50 participants, utilizing principal component analysis (PCA) to capture the variance in foot shapes. The derived surface shapes from SSM then guide the FFD process to accurately reconstruct the internal bone structures. The workflow accuracy was established by comparing three model-generated foot models against corresponding skin and bone geometries manually segmented and not part of the original training set. We used the top ten principal components representing 85 % of the population variation to create the model. For prediction validation, the average Dice similarity coefficient, Hausdorff distance error, and root mean square error were 0.92 ± 0.01, 2.2 ± 0.19 mm, and 2.95 ± 0.23 mm for soft tissues, and 0.84 ± 0.03, 1.83 ± 0.1 mm, and 2.36 ± 0.12 mm for bones, respectively. This study presents an efficient approach for 3D personalized foot model reconstruction via SSM generation of the foot surface that informs bone reconstruction based on FFD. The proposed workflow is part of the open-source Musculoskeletal Atlas Project linked to OpenSim and makes it feasible to accurately generate foot models informed by population anatomy, and suitable for rigid body analysis and finite element simulation.

5.
Microsc Res Tech ; 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38623772

ABSTRACT

This research is to examine the macromorphological and foliar epidermal anatomical features of Lilium rosthornii Diels and its ability to plastically adapt to environmental forces, which is crucial for its taxonomic classification. L. rosthornii has macromorphological characteristics such as linear to lanceolate leaves of up to 20 cm in length and 2-3 cm in breadth, grouped in a whorled pattern. The blooms are voluminous and conspicuous, measuring up to 15 cm in diameter and are supported by a towering stalk that grows up to 1 m in height. The foliar epidermal structure of L. rosthornii exhibits a stomatal length of 82.02 ± 5.77 µm and a width of 29.19 ± 1.39 µm. These measurements suggest that the plant's stomata are influenced by its ploidy levels and may serve as adaptive mechanisms to enhance water consumption efficiency. The leaf structure shows a significant thickness of 398.74 ± 97.96 µm, which might potentially contribute to its ability to withstand environmental challenges. Additionally, the presence of defensive adaptations in the top and lower epidermal layers further supports this observation. The palisade tissue measurement (58.87 ± 9.56 m) and spongy tissue measurement (32.42 ± 12.72 µm) indicate a potential for photosynthetic optimization. Furthermore, there is a possible correlation between the vascular bundle width (28.15 ± 6.52 °m) and the efficiency of nutrition delivery. The results of this study emphasize the notable diversity in the foliar structures of L. rosthornii, offering valuable understanding of its morphological adaptations that have ecological and taxonomic significance. The findings provide a deeper comprehension of the potential impact of anatomical characteristics on plant function and categorization, hence providing significant insights to the domain of plant morphology and systematics. RESEARCH HIGHLIGHTS: Examines Lilium rosthornii's anatomical features and environmental adaptability for taxonomic relevance. Leaf thickness and epidermal defenses indicate resilience to environmental stress. Highlights the diversity in L. rosthornii's foliar structures, with implications for ecological and taxonomic significance Offers insights into the impact of anatomical characteristics on plant function and classification.

6.
Antioxidants (Basel) ; 13(4)2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38671884

ABSTRACT

The intricate interplay between plant-based nutrition, antioxidants, and their impact on athletic performance forms the cornerstone of this comprehensive review. Emphasizing the pivotal importance of dietary choices in the realm of sports, this paper sets the stage for an in-depth exploration of how stress and physical performance are interconnected through the lens of nutrition. The increasing interest among athletes in plant-based diets presents an opportunity with benefits for health, performance, and recovery. It is essential to investigate the connection between sports, plants, and antioxidants. Highlighting the impact of nutrition on recovery and well-being, this review emphasizes how antioxidants can help mitigate oxidative stress. Furthermore, it discusses the growing popularity of plant-based diets among athletes. It elaborates on the importance of antioxidants in combating radicals addressing stress levels while promoting cellular health. By identifying rich foods, it emphasizes the role of a balanced diet in ensuring sufficient intake of these beneficial compounds. Examining stress within the context of sports activities, this review provides insights into its mechanisms and its impact on athletic performance as well as recovery processes. This study explores the impact of plant-based diets on athletes including their types, potential advantages and challenges. It also addresses the drawbacks of relying on plant-based diets, concerns related to antioxidant supplementation and identifies areas where further research is needed. Furthermore, the review suggests directions for research and potential innovations in sports nutrition. Ultimately it brings together the aspects of sports, plant-based nutrition, and antioxidants to provide a perspective for athletes, researchers and practitioners. By consolidating existing knowledge, it offers insights that can pave the way for advancements in the ever-evolving field of sports nutrition.

7.
J Sports Sci Med ; 23(1): 196-208, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38455438

ABSTRACT

Torsional stiffness of athletic footwear plays a crucial role in preventing injury and improving sports performance. Yet, there is a lack of research focused on the biomechanical effect of torsional stiffness in badminton shoes. This study aimed to comprehensively investigate the influence of three different levels of torsional stiffness in badminton shoes on biomechanical characteristics, sports performance, and injury risk in badminton players. Fifteen male players, aged 22.8 ± 1.96 years, participated in the study, performing badminton-specific tasks, including forehand clear stroke [left foot (FCL) and right foot (FCR)], 45-degree sidestep cutting (45C), and consecutive vertical jumps (CVJ). The tasks were conducted wearing badminton shoes of torsional stiffness measured with Shore D hardness 50, 60, and 70 (referred to as 50D, 60D, and 70D, respectively). The primary biomechanical parameters included ankle, knee, and MTP joint kinematics, ankle and knee joint moments, peak ground reaction forces, joint range of motion (ROM), and stance time. A one-way repeated measures ANOVA was employed for normally distributed data and Friedman tests for non-normally distributed data. The 70D shoe exhibited the highest ankle dorsiflexion and lowest ankle inversion peak angles during 45C task. The 60D shoe showed significantly lower knee abduction angle and coronal motions compared to the 50D and 70D shoes. Increased torsional stiffness reduced stance time in the FCR task. No significant differences were observed in anterior-posterior and medial-lateral ground reaction forces (GRF). However, the 70D shoe demonstrated higher vertical GRF than the 50D shoe while performing the FCR task, particularly during 70% - 75% of stance. Findings from this study revealed the significant role of torsional stiffness in reducing injury risk and optimizing performance during badminton tasks, indicating that shoes with an intermediate level of stiffness (60D) could provide a beneficial balance between flexibility and stability. These findings may provide practical references in guiding future badminton shoe research and development. Further research is necessary to explore the long-term effects of altering stiffness, considering factors such as athletic levels and foot morphology, to understand of the influence of torsional stiffness on motion biomechanics and injury prevalence in badminton-specific tasks.


Subject(s)
Lower Extremity , Racquet Sports , Humans , Male , Biomechanical Phenomena , Foot , Knee
8.
Front Bioeng Biotechnol ; 12: 1337540, 2024.
Article in English | MEDLINE | ID: mdl-38390360

ABSTRACT

Introduction: The purpose of this study was to compare the changes in foot at different sole-ground contact angles during forefoot running. This study tried to help forefoot runners better control and improve their technical movements by comparing different sole-ground contact angles. Methods: A male participant of Chinese ethnicity was enlisted for the present study, with a recorded age of 25 years, a height of 183 cm, and a body weight of 80 kg. This study focused on forefoot strike patterns through FE analysis. Results: It can be seen that the peak von Mises stress of M1-5 (Metatarsal) of a (Contact angle: 9.54) is greater than that of b (Contact angle: 7.58) and c (Contact angle: 5.62) in the three cases. On the contrary, the peak von Mises stress of MC (Medial Cuneiform), IC (Intermediate Cuneiform), LC (Lateral Cuneiform), C (Cuboid), N (Navicular), T (Tarsal) in three different cases is opposite, and the peak von Mises stress of c is greater than that of a and b. The peak von Mises stress of b is between a and c. Conclusion: This study found that a reduced sole-ground contact angle may reduce metatarsal stress fractures. Further, a small sole-ground contact angle may not increase ankle joint injury risk during forefoot running. Hence, given the specialized nature of the running shoes designed for forefoot runners, it is plausible that this study may offer novel insights to guide their athletic pursuits.

9.
Heliyon ; 10(4): e26052, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38370177

ABSTRACT

As one of many fundamental sports techniques, the landing maneuver is also frequently used in clinical injury screening and diagnosis. However, the landing patterns are different under different constraints, which will cause great difficulties for clinical experts in clinical diagnosis. Machine learning (ML) have been very successful in solving a variety of clinical diagnosis tasks, but they all have the disadvantage of being black boxes and rarely provide and explain useful information about the reasons for making a particular decision. The current work validates the feasibility of applying an explainable ML (XML) model constructed by Layer-wise Relevance Propagation (LRP) for landing pattern recognition in clinical biomechanics. This study collected 560 groups landing data. By incorporating these landing data into the XML model as input signals, the prediction results were interpreted based on the relevance score (RS) derived from LRP. The interpretation obtained from XML was evaluated comprehensively from the statistical perspective based on Statistical Parametric Mapping (SPM) and Effect Size. The RS has excellent statistical characteristics in the interpretation of landing patterns between classes, and also conforms to the clinical characteristics of landing pattern recognition. The current work highlights the applicability of XML methods that can not only satisfy the traditional decision problem between classes, but also largely solve the lack of transparency in landing pattern recognition. We provide a feasible framework for realizing interpretability of ML decision results in landing analysis, providing a methodological reference and solid foundation for future clinical diagnosis and biomechanical analysis.

10.
Comput Biol Med ; 170: 108016, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38277923

ABSTRACT

The ankle joint plays a crucial role in gait, facilitating the articulation of the lower limb, maintaining foot-ground contact, balancing the body, and transmitting the center of gravity. This study aimed to implement long short-term memory (LSTM) networks for predicting ankle joint angles, torques, and contact forces using inertial measurement unit (IMU) sensors. Twenty-five healthy participants were recruited. Two IMU sensors were attached to the foot dorsum and the vertical axis of the distal anteromedial tibia in the right lower limb to record acceleration and angular velocity during running. We proposed a LSTM-MLP (multilayer perceptron) model for training time-series data from IMU sensors and predicting ankle joint biomechanics. The model underwent validation and testing using a custom nested k-fold cross-validation process. The average values of the coefficient of determination (R2), mean absolute error (MAE), and mean squared error (MSE) for ankle dorsiflexion joint and moment, subtalar inversion joint and moment, and ankle joint contact forces were 0.89 ± 0.04, 0.75 ± 1.04, and 2.96 ± 4.96 for walking, and 0.87 ± 0.07, 0.88 ± 1.26, and 4.1 ± 7.17 for running, respectively. This study demonstrates that IMU sensors, combined with LSTM neural networks, are invaluable tools for evaluating ankle joint biomechanics in lower limb pathological diagnosis and rehabilitation, offering a cost-effective and versatile alternative to traditional experimental settings.


Subject(s)
Ankle Joint , Gait , Humans , Biomechanical Phenomena , Walking , Foot
11.
J Physiol Biochem ; 80(2): 329-335, 2024 May.
Article in English | MEDLINE | ID: mdl-38261146

ABSTRACT

The role of Peroxisome proliferator-activated receptor-gamma coactivator alpha (PGC-1α) in fat metabolism is not well known. In this study, we compared the mechanisms of muscle-specific PGC-1α overexpression and exercise-related adaptation-dependent fat metabolism. PGC-1α trained (PGC-1α Ex) and wild-trained (wt-ex) mice were trained for 10 weeks, five times a week at 30 min per day with 60 percent of their maximal running capacity. The PGC-1α overexpressed animals exhibited higher levels of Fibronectin type III domain-containing protein 5 (FNDC5), 5' adenosine monophosphate-activated protein kinase alpha (AMPK-α), the mammalian target of rapamycin (mTOR), Sirtuin 1 (SIRT1), Lon protease homolog 1 (LONP1), citrate synthase (CS), succinate dehydrogenase complex flavoprotein subunit A (SDHA), Mitofusin-1 (Mfn1), endothelial nitric oxide synthase (eNOS), Hormone-sensitive lipase (HSL), adipose triglyceride lipase (ATGL), G protein-coupled receptor 41 (GPR41), and Phosphatidylcholine Cytidylyltransferase 2 (PCYT2), and lower levels of Sirtuin 3 (SIRT3) compared to wild-type animals. Exercise training increased the protein content levels of SIRT1, HSL, and ATGL in both the wt-ex and PGC-1α trained groups. PGC-1α has a complex role in cellular signaling, including the upregulation of lipid metabolism-associated proteins. Our data reveals that although exercise training mimics the effects of PGC-1α overexpression, it incorporates some PGC-1α-independent adaptive mechanisms in fat uptake and cell signaling.


Subject(s)
Fibronectins , Muscle, Skeletal , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha , Physical Conditioning, Animal , Animals , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Muscle, Skeletal/metabolism , Mice , Male , Mice, Inbred C57BL , Lipid Metabolism , Mice, Transgenic , Sirtuin 1/metabolism , Sirtuin 1/genetics , AMP-Activated Protein Kinases/metabolism , Adaptation, Physiological , Signal Transduction
12.
Sci Rep ; 14(1): 1826, 2024 01 21.
Article in English | MEDLINE | ID: mdl-38246957

ABSTRACT

Despite runners frequently suffering from dermatologic issues during long distance running, there is no compelling evidence quantitatively investigating their underlying injury mechanism. This study aimed to determine the foot morphology and temperature changes during long distance running and reveal the effect of these alterations on the injury risk of bruised toenail by measuring the subjective-perceived hallux comfort and gap length between the hallux and toebox of the shoe. Ten recreational runners participated in the experimental tests before (baseline), immediately after 5 and 10 km of treadmill running (12 km/h), in which the foot morphology was measured by a 3D foot scanner, the foot temperature was detected by an infrared camera, the perceived comfort was recorded by a visual analogue scale, and the gap length in the sagittal plane was captured by a high-speed camera. Ball width became narrower (106.39 ± 6.55 mm) and arch height (12.20 ± 2.34 mm) was reduced greatly after the 10 km run (p < 0.05). Foot temperature increased significantly after 5 and 10 km of running, and the temperature of dorsal hallux (35.12 ± 1.46 °C), dorsal metatarsal (35.92 ± 1.59 °C), and medial plantar metatarsal (37.26 ± 1.34 °C) regions continued to increase greatly from 5 to 10 km of running (p < 0.05). Regarding hallux comfort, the perceived scores significantly reduced after 5 and 10 km of running (2.10 ± 0.99, p < 0.05). In addition, during one running gait cycle, there was a significant increase in gap length at initial contact (39.56 ± 6.45 mm, p < 0.05) for a 10 km run, followed by a notable decrease upon reaching midstance (29.28 ± 6.81 mm, p < 0.05). It is concluded that the reduced ball width and arch height while increased foot temperature during long-distance running would exacerbate foot-shoe interaction, potentially responsible for bruised toenail injuries.


Subject(s)
Contusions , Running , Humans , Nails , Temperature , Foot , Lower Extremity
13.
Free Radic Biol Med ; 210: 65-74, 2024 01.
Article in English | MEDLINE | ID: mdl-37977212

ABSTRACT

Exercise-induced adaptation is achieved by altering the epigenetic landscape of the entire genome leading to the expression of genes involved in various processes including regulatory, metabolic, adaptive, immune, and myogenic functions. Clinical and experimental data suggest that the methylation pattern/levels of promoter/enhancer is not linearly correlated with gene expression and proteome levels during physical activity implying a level of complexity and interplay with other regulatory modulators. It has been shown that a higher level of physical fitness is associated with a slower DNA methylation-based aging clock. There is strong evidence supporting exercise-induced ROS being a key regulatory mediator through overlapping events, both as signaling entities and through oxidative modifications to various protein mediators and DNA molecules. ROS generated by physical activity shapes epigenome both directly and indirectly, a complexity we are beginning to unravel within the epigenetic arrangement. Oxidative modification of guanine to 8-oxoguanine is a non-genotoxic alteration, does not distort DNA helix and serves as an epigenetic-like mark. The reader and eraser of oxidized guanine is the 8-oxoguanine DNA glycosylase 1, contributing to changes in gene expression. In fact, it can modulate methylation patterns of promoters/enhancers consequently leading to multiple phenotypic changes. Here, we provide evidence and discuss the potential roles of exercise-induced ROS in altering cytosine methylation patterns during muscle adaptation processes.


Subject(s)
DNA Methylation , Epigenesis, Genetic , Reactive Oxygen Species/metabolism , Exercise , DNA/metabolism , Guanine/metabolism
14.
J Biomech ; 162: 111865, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37976687

ABSTRACT

Individuals with chronic ankle instability (CAI) suffer from the resulting sequela of repetitive lateral ankle sprains (LAS), whilst copers appear to cope with initial LAS successfully. Therefore, the aim of this study was to explore the intra-foot biomechanical differences among CAI, copers, and healthy individuals during dynamic tasks. Twenty-two participants per group were included and required to perform cutting and different landing tasks (DL: drop landing; FL: forward jump followed a landing). A five-segment foot model with 8 degrees of freedom was used to explore the intra-foot movement among these three groups. Smaller dorsiflexion angles were found in copers (DL tasks and prelanding task) and CAI (DL and FL task) compared to healthy participants. Copers presented a more eversion position compared to others during these dynamic tasks. During the descending phase of DL task, greater dorsiflexion angles in the metatarsophalangeal joint were found in copers compared to the control group. Joint moment difference was only found in the subtalar joint during the descending phase of FL task, presenting more inversion moments in copers compared to healthy participants. Copers rely on more eversion positioning to prevent over-inversion of the subtalar joint compared to CAI. Further, the foot became more unstable when conducting sport-related movements, suggesting that foot stability seems to be sensitive to the task types. These findings may help in designing and implementing interventions to restore functions of the ankle joint in CAI individuals.


Subject(s)
Ankle Injuries , Joint Instability , Humans , Ankle , Biomechanical Phenomena , Ankle Joint , Foot , Movement , Chronic Disease
15.
Gait Posture ; 107: 293-305, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37926657

ABSTRACT

BACKGROUND: Finding the best subset of gait features among biomechanical variables is considered very important because of its ability to identify relevant sports and clinical gait pattern differences to be explored under specific study conditions. This study proposes a new method of metaheuristic optimization-based selection of optimal gait features, and then investigates how much contribution the selected gait features can achieve in gait pattern recognition. METHODS: Firstly, 800 group gait datasets performed feature extraction to initially eliminate redundant variables. Then, the metaheuristic optimization algorithm model was performed to select the optimal gait feature, and four classification algorithm models were used to recognize the selected gait feature. Meanwhile, the accuracy results were compared with two widely used feature selection methods and previous studies to verify the validity of the new method. Finally, the final selected features were used to reconstruct the data waveform to interpret the biomechanical meaning of the gait feature. RESULTS: The new method finalized 10 optimal gait features (6 ankle-related and 4-related knee features) based on the extracted 36 gait features (85 % variable explanation) by feature extraction. The accuracy in gait pattern recognition among the optimal gait features selected by the new method (99.81 % ± 0.53 %) was significantly higher than that of the feature-based sorting of effect size (94.69 % ± 2.68 %), the sequential forward selection (95.59 % ± 2.38 %), and the results of previous study. The interval between reconstructed waveform-high and reconstructed waveform-low curves based on the selected feature was larger during the whole stance phase. SIGNIFICANCE: The selected gait feature based on the proposed new method (metaheuristic optimization-based selection) has a great contribution to gait pattern recognition. Sports and clinical gait pattern recognition can benefit from population-based metaheuristic optimization techniques. The metaheuristic optimization algorithms are expected to provide a practical and elegant solution for sports and clinical biomechanical feature selection with better economy and accuracy.


Subject(s)
Gait Analysis , Sports , Humans , Algorithms , Gait , Lower Extremity
16.
Front Bioeng Biotechnol ; 11: 1276864, 2023.
Article in English | MEDLINE | ID: mdl-38152288

ABSTRACT

Introduction: Given the possibility of higher ground temperatures in the future, the pursuit of a cushioning material that can effectively reduce sports injuries during exercise, particularly one that retains its properties at elevated temperatures, has emerged as a serious concern. Methods: A total of 18 man recreational runners were recruited from Ningbo University and local clubs for participation in this study. Frequency analysis was employed to investigate whether there is a distinction between non-Newtonian (NN) shoes and ethylene vinyl acetate (EVA) shoes. Results: The outcomes indicated that the utilization of NN shoes furnished participants with superior cushioning when engaging in a 90° cutting maneuver subsequent to an outdoor exercise, as opposed to the EVA material. Specifically, participants wearing NN shoes exhibited significantly lower peak resultant acceleration (p = 0.022) and power spectral density (p = 0.010) values at the distal tibia compared to those wearing EVA shoes. Moreover, shock attenuation was significantly greater in subjects wearing NN shoes (p = 0.023) in comparison to EVA shoes. Performing 90° cutting maneuver in NN shoes resulted in significantly lower peak ground reaction force (p = 0.010), vertical average loading rate (p < 0.010), and vertical instantaneous loading rate (p = 0.030) values compared to performing the same maneuvers in EVA shoes. Conclusion: The study found that the PRA and PSD of the distal tibia in NN footwear were significantly lower compared to EVA footwear. Additionally, participants exhibited more positive SA while using NN footwear compared to EVA. Furthermore, during the 90° CM, participants wearing NN shoes showed lower PGRF, VAIL, and VILR compared to those in EVA shoes. All these promising results support the capability of NN footwear to offer additional reductions in potential injury risk to runners, especially in high-temperature conditions.

17.
Ageing Res Rev ; 92: 102120, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37944706

ABSTRACT

OBJECTIVES: To synthesize evidence and summarize research findings related to the effectiveness and feasibility of dance movement intervention (DMI) in older adults with mild cognitive impairment (MCI), Alzheimer's disease (AD), and dementia; to systemically map existing research gaps and research directions for future practice. METHODS: A systematic search was conducted using six electronic databases: Web of Science, PubMed, PsycINFO, MEDLINE, ScienceDirect, and Cochrane Central Register of Controlled Trials. The methodological quality of included studies was assessed using the Cochrane Risk of Bias Tool for Randomized Trials (RoB 2) and The Risk of Bias in Non-randomized Studies of Interventions (ROBINS-I). RESULTS: 29 dance intervention studies (13 RCT studies) were included in the scoping review: 62% of MCI, 10% of AD, and 28% of dementia; a total of 1708 participants (Female=1247; Male=461) aged from 63.8 ( ± 5.24) to 85.8 ( ± 5.27) years old. Eight RCT studies were included in the meta-analysis; results indicated that dance interventions had a significant effect on global cognition, memory, balance, and significantly decreased depression. No significant effects were found for executive function. CONCLUSIONS: Dance is a non-pharmacological, effective, affordable, and engaging intervention that can be used as a complementary treatment for older adults with MCI, AD, and dementia.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Dancing , Aged , Female , Humans , Male , Alzheimer Disease/drug therapy , Cognition , Cognitive Dysfunction/therapy , Executive Function
18.
Front Bioeng Biotechnol ; 11: 1270169, 2023.
Article in English | MEDLINE | ID: mdl-37954019

ABSTRACT

Variability in musculoskeletal and lower leg structure has the potential to influence hopping height. Achilles tendon moment arm length and plantarflexor muscle strength can influence ankle joint torque development and, consequently, hopping performance. While most studies have examined the connection of the Achilles tendon moment arm with hopping performance including the resting length, in this study we attempted to explore how the changes in Achilles tendon moment arm are related to hopping performance. Therefore, the purpose of this study was to test for correlations between foot and lower leg muscle structure parameters (i.e., muscle mass, volume, cross-sectional area and Achilles tendon moment arm length) and hopping height performance in relation to changes in Achilles tendon moment arm length. Eighteen participants (10 males 8 female) performed repetitive bilateral hopping on a force platform while sagittal plane kinematics of the lower leg were recorded. Additionally, maximal isometric plantarflexion was measured. To obtain structural parameters of the lower leg, the right lower leg of each participant was scanned with magnetic resonance imaging. The cross-sectional areas of the Achilles tendon, soleus, lateral and medial gastrocnemius were measured, while muscle volumes, muscle mass, and Achilles tendon moment arm length were calculated. Contrary to our initial assumption, longer Achilles tendon moment arm did not result in superior hopping performance. Interestingly, neither maximal isometric plantarflexion force nor muscle size correlated with repetitive bilateral hopping performance. We can assume that the mechanical characteristics of the tendon and the effective utilization of the stored strain energy in the tendon may play a more important role in repetitive hopping than the structural parameters of the lower leg.

19.
Front Public Health ; 11: 1219676, 2023.
Article in English | MEDLINE | ID: mdl-37849722

ABSTRACT

Objectives: In this review, we aim to highlight the evidence base for the benefits of exercise in relation to the treatment of noncommunicable diseases (NCDs), draw on the Health Triangular Policy Framework to outline the principal facilitators and barriers for implementing exercise in health policy, and make concrete suggestions for action. Methods: Literature review and framework analysis were conducted to deal with the research questions. Results: Exercise prescription is a safe solution for noncommunicable diseases prevention and treatment that enables physicians to provide and instruct patients how to apply exercise as an important aspect of disease treatment and management. Combining exercise prescription within routine care, in inpatient and outpatient settings, will improve patients' life quality and fitness levels. Conclusion: Inserting exercise prescription into the healthcare system would improve population health status and healthy lifestyles. The suggestions outlined in this study need combined efforts from the medical profession, governments, and policymakers to facilitate practice into reality in the healthcare arena.


Subject(s)
Noncommunicable Diseases , Humans , Noncommunicable Diseases/prevention & control , Noncommunicable Diseases/epidemiology , Health Policy , Exercise Therapy , Exercise , Prescriptions
20.
Bioengineering (Basel) ; 10(10)2023 Sep 25.
Article in English | MEDLINE | ID: mdl-37892858

ABSTRACT

Latin dance involves fundamental walking steps, integral to the dance process. While resembling daily walking, Latin dance demands higher balance levels, necessitating body adjustments by dancers. These adaptations affect dancers' gait biomechanics, prompting our study on gait differences between Latin dancers (LDs) and non-dancers (NDs). We enlisted 21 female Latin dancers and 21 subjects based on specific criteria. Participants executed walking tasks, with an independent sample t-test for 1-dimensional statistical parameter mapping (SPM 1d) analyzing stance phase variations between LDs and NDs. Notably, significant differences in ankle and hip external rotation were evident during the 16.43-29.47% (p = 0.015) and 86.35-100% (p = 0.014) stance phase. Moreover, pronounced distinctions in rectus Achilles tendon force (ATF) (12.83-13.10%, p = 0.049; 15.89-80.19%, p < 0.001) and Patellofemoral joint contact force (PTF) (15.85-18.31%, p = 0.039; 21.14-24.71%, p = 0.030) during stance were noted between LDs (Latin dancers) and NDs (Non-dancers). The study revealed dancers' enhanced balance attributed to external ankle rotation for dance stability, coupled with augmented Achilles tendon and patellofemoral joint strength from prolonged practice. Moreover, integrating suitable Latin dance into rehabilitation may benefit those with internal rotation gait issues.

SELECTION OF CITATIONS
SEARCH DETAIL
...